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Can events be accurately described as historic at the time 
they are happening? Claims of this sort are in effect predic-
tions about the evaluations of future historians; that is, that 
they will regard the events in question as significant. Here we 
provide empirical evidence in support of earlier philosophical 
arguments1 that such claims are likely to be spurious and that, 
conversely, many events that will one day be viewed as his-
toric attract little attention at the time. We introduce a con-
ceptual and methodological framework for applying machine 
learning prediction models to large corpora of digitized his-
torical archives. We find that although such models can cor-
rectly identify some historically important documents, they 
tend to overpredict historical significance while also failing 
to identify many documents that will later be deemed impor-
tant, where both types of error increase monotonically with 
the number of documents under consideration. On balance, 
we conclude that historical significance is extremely difficult 
to predict, consistent with other recent work on intrinsic lim-
its to predictability in complex social systems2,3. However, the 
results also indicate the feasibility of developing ‘artificial 
archivists’ to identify potentially historic documents in very 
large digital corpora.

Almost two centuries ago, Hegel4 observed that “the owl of 
Minerva spreads its wings only with the falling of the dusk”, mean-
ing that philosophical understanding of an era is possible only as it 
is ending. Arthur Danto, an analytical philosopher, developed this 
intuition into a theoretical argument for why the judgement of his-
tory is intrinsically unpredictable1. Danto imagined a hypothetical 
entity—the ideal chronicler—that possesses complete information 
about the state of the world, along with its entire history up to that 
point, and unlimited ability to integrate and analyse that informa-
tion. Danto then argued that the ideal chronicler would still be 
unable to anticipate the significance that will be assigned to con-
temporaneous events by future historians because their judgements 
are inevitably informed by events that have not yet taken place. 
Evaluating the historical significance of a single event would in 
principle require the ideal chronicler to accurately predict not only 
its impact on subsequent events, but also how those events would 
impact broader social structures and practices5. For example, to have 
anticipated the historical significance of the storming of the Bastille 
on 14 July 1789, the ideal chronicler would have had to predict not 
only the whole sequence of events leading to the French Revolution, 
but also their transformation of political and philosophical notions 
of sovereignty—a profound structural shift that has arguably shaped 
all subsequent revolutionary movements6.

Danto’s argument is compelling in theory, but as a practical mat-
ter it may still be the case that some, or even most, historically sig-
nificant events could be identified at the time they are happening 
or shortly thereafter. For example, while the full significance of the 
Bastille took many years to develop, contemporaneous accounts 

show that within days it was perceived as a legitimate act of popu-
lar revolution, the implications of which might well have already 
seemed historic. One can also easily think of other events, such as 
Einstein’s formulation of special relativity, the moon landing, the fall 
of the Berlin Wall and the discovery of the double-helical structure 
of DNA, that were immediately hailed as historic and continue to be 
viewed that way decades later. Certainly, in our current era, politi-
cians, journalists and experts alike do not experience any difficulty 
in deciding what future historians will judge to be important: a sim-
ple web search for ‘historic moment’ reveals more than 100 usages 
per month. So, who is right?

Conceptually, one way to answer such a question would be with 
the aid of a hypothetical dataset that satisfies three key properties. 
First, it would constitute a complete census of events. Second, the 
events would be well defined and separable, allowing unambiguous 
evaluation. Third, each event would be labelled with two impor-
tance scores (one assigned by contemporary observers and one by 
future historians). Imagine, for example, a team of experts who 
develop a codebook for defining events and rating their historical 
significance. These experts would train until they achieved high 
intercoder reliability, and then set about evaluating all candidate 
events as they occur, including many that may seem trivial. Decades 
or even a century or more later, another team would use the same 
coding criteria and training regimen to evaluate the same data. 
One could then simply compute the classification accuracy of the 
contemporaneous experts using standard metrics such as precision  
and recall.

By definition, a dataset of this sort would take at least decades 
to construct. It also presumes that historians treat events as discrete 
and uniform units of analysis when, in fact, events in the histori-
cal literature are extremely heterogeneous. For example, events such 
as the assassination of Archduke Ferdinand and the negotiations 
leading to the signing of the Treaty of Versailles occurred on two 
very different time scales and could even be conjoined into a single  
event on yet a third time scale. World War I and World War II,  
in turn, could be described as distinct or as parts of something  
bigger: a Thirty Years War, a Forty Years War or an even longer 
“Crisis of the Middle Powers”.7 Debates about how to categorize  
and periodize such complex phenomena in fact lie at the very core 
of historical scholarship and are rarely resolved to universal satis-
faction. Confronted with this potentially insoluble conceptual 
ambiguity, we proceed in much the same way as historians do when 
attempting to identify and define events: by turning to the writ-
ten historical record; that is, to collections of documents that have  
been preserved and curated by archivists. Given limited time and 
storage capacity, both archivists and historians must continually 
make judgements about which documents will be most valuable 
in representing, illuminating and explaining events and trends. In 
practice, therefore, when historians debate the relative importance 
of different events, they typically cite different historical documents.
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Thus motivated, we now outline a more tractable version of the 
hypothetical exercise above—one that combines digital archives of 
the sort that are commonly used by historians with machine learn-
ing methods capable of labelling millions of documents automati-
cally. Specifically, we study a collection of 1,952,029 US Department 
of State (DOS) cables from 1973 (when the State Department began 
storing them as electronic records) to 1979 (the last year for which 
these records have been declassified and released to researchers; 
http://history-lab.org/cables). Addressing the first desired prop-
erty, cables were the dominant mode for communicating important 
information between the DOS in Washington and embassies and 
consulates around the world. While our dataset clearly represents 
only a small portion of all contemporaneous reports of events tak-
ing place within the 1973–1979 period, it is highly likely that any 
matter of importance in US foreign affairs will be mentioned in 
this collection. Equally important for our purpose, the vast major-
ity of cables describe routine and often unimportant matters (for 
example, travel schedules of various officials and embassy social 
functions) associated with the routine business between the United 
States and other states; thus, consistent with our idealized design, 
our collection includes many events that would have seemed trivial 
at the time for each one that seemed important.

Addressing the second criterion, we treat individual cables as 
proxies for different events. To be sure, some events, such as treaty 
negotiations, may play out over extended periods and thus be the 
subject of many cables. Conversely, more than one event could be 
referenced in a single cable. In practice, however, diplomats were 
trained to summarize essential information as concisely as pos-
sible, both because of the limited time of senior policymakers and 
the limited carrying capacity of communications and encryption  
systems. They were also required to identify and classify the sub-
ject of each cable, and break up longer, more complex reports and 
analyses into multiple communications, such as when a meeting 
dealt with several subjects. Although imperfect, cables can therefore 
serve as references to both simple and complex phenomena, which 
is why scholars so often cite and quote from cables to represent his-
torical events.

Finally, addressing the third criterion, we created two sets of 
labels: one that reflects the perceived importance of each cable in 
the eyes of contemporaneous observers (in this case, the profes-
sional diplomats and other US State Department employees who 
authored the cables); and the other that reflects the perceived impor-
tance of the same cable to professional historians decades later. For 
the former, we constructed a perceived contemporaneous impor-
tance (PCI) score ρ = ∑ wi j ij for each cable, i, where −10 ≤ wj ≤20 
are weights assigned to 22 metadata fields (weights were assigned 
manually by expert human annotators; see Supplementary Methods 
for details). Entries in these fields, such as how the cable was to be 
handled, how it was classified and whether it was designated for 
high-level attention, can be interpreted as the author’s assessment of 
the importance of the content (see Methods). For the latter, we con-
sulted a second document collection entitled the Foreign Relations 
of the United States (FRUS). By law, the Office of the Historian of the 
DOS must certify that the documents in FRUS constitute a “thor-
ough, accurate, and reliable” account of US foreign policy8. They 
include diplomatic cables, transcripts of telephone calls, planning 
memoranda and other official records, compiled decades after the 
events in question by professional historians with the explicit goal 
of conveying historically important information (http://history-lab.
org/frus). Although the collection dates to 1861, here we are exclu-
sively interested in the volumes spanning 1973–1979 (the period 
that corresponds to the first electronic State Department cables). 
Out of the total collection of nearly 2 million cables, only 1,723 
(0.09%) were selected for inclusion in FRUS, consistent with our 
requirement that only a small fraction of records should be consid-
ered historically important.

Using these data, we trained and evaluated a series of statisti-
cal models to answer three questions that are motivated by Danto’s 
hypothesis. First, to address the question of how well contempo-
raneous impressions of importance reflect future historical judge-
ments, we evaluated how accurately the PCI score of a given cable 
can predict its subsequent appearance in FRUS. Second, to address 
the question of how well any contemporaneous entity, human 
observer or hypothetical ideal chronicler can anticipate histori-
cal importance, we evaluated the predictive accuracy of a machine 
learning classifier that uses all available information for the same set 
of cables. Finally, to interpret our findings, we manually inspected a 
selection of true positive, false positive and false negative cables, to 
identify features associated with each.

Addressing our first question, we first checked whether the 
PCI score contains any information relevant to the FRUS versus 
non-FRUS distinction. Figure 1a shows PFRUS—the probability of a 
cable being included in FRUS—as a function of the PCI score for 
four samples of cables: (1) all 1,723 FRUS cables and a randomly 
sampled subset of the same number of non-FRUS cables (that is, a 
1:1 sample); (2) all FRUS cables and a randomly sampled subset of 
50 × 1,723 = 86,150 non-FRUS cables (a 50:1 sample); (3) all FRUS 
cables and a randomly sampled subset of 100 × 1,723 = 172,300 non-
FRUS cables (a 100:1 sample); and (4) the complete set of all 1,723 
FRUS and 1,950,306 non-FRUS cables (that is, a 1,132:1 ratio). The 
1:1 non-FRUS:FRUS sample corresponds to a ‘balanced’ classifica-
tion task wherein the classifier is presented with two cables (one 
FRUS and the other non-FRUS) and asked to identify which is 
which. The larger sample sizes correspond to increasingly difficult, 
and more realistic, classification tasks, wherein the classifier must 
distinguish the FRUS cable from an ever-larger collection of non-
FRUS cables.

Figure 1a shows a positive and monotonically increasing depen-
dency of PFRUS on the PCI score, confirming that the PCI score does 
indeed contain relevant information about PFRUS. For example, of the 
ten cables with the highest overall PCI scores, eight relate to the most 
important events in this period, such as the Iranian Revolution, the 
second Strategic Arms Limitation Treaty, the Vietnamese invasion 
of Cambodia and the civil war in El Salvador. However, Fig. 1a also 
shows that the relationship becomes progressively weaker and less 
informative as the sample size increases. For example, while for the 
1:1 sample the difference between the highest and lowest PCI scores 
can discriminate between FRUS and non-FRUS with near certainty, 
even the highest scoring cables in the full (that is, 1,132:1) sample 
are only four percentage points more likely than the lowest scoring 
cables to belong to FRUS. Figure 1b summarizes the same informa-
tion, showing the correlation between PCI score and PFRUS as a func-
tion of sample size. Consistent with Fig. 1a, PCI score is positively 
correlated with PFRUS for all four samples, but also declines steadily 
as the ratio of non-FRUS to FRUS increases, from 0.89 for the 1:1 
sample to 0.45 for the full sample.

Next, Fig. 1c shows the precision–recall curves for a single sam-
ple of each of the 1:1, 50:1, 100:1 and full sample sizes, along with 
the corresponding maximum value of the F1 score (see Methods). 
For the 1:1, 50:1 and 100:1 samples, we repeated this exercise for 
10 randomly drawn samples of non-FRUS cables and computed 
the average best F1 score and standard errors. Figure 1d shows the 
F1 score and standard error for each sample size, along with corre-
sponding scores for a naive or ‘zero information’ model that predicts 
that every cable will be in FRUS. Although extremely simple, the 
naive model is useful as a baseline against which we can compare 
our model performance. For example, the naive model has perfect 
recall (by construction), and hence does reasonably well for the 
balanced sample, but its precision (and hence F1 score) gets pro-
gressively worse as the number of non-FRUS cables in our sample 
increases. Similarly, the PCI model performs well for the 1:1 sample 
(F1 = 0.86) and its performance also decreases as the sample size 
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increases. However, compared with the naive model, the perfor-
mance of the PCI degrades more slowly with increasing sample  
size, hence its relative performance increases correspondingly  
(Fig. 1d, inset).

These results provide mixed support for Danto’s hypothesis. 
On the one hand, for the smallest sample, the PCI model is highly 
reliable in absolute terms, and dramatically outperforms the naive 
model even for large samples. Both of these results suggest that 
what contemporary observers judged to be important contained 
some signal regarding their cables’ future historical significance. On 
the other hand, the diminishing F1 scores for larger sample sizes 
show that contemporaneous labels become rapidly less indicative of 
historical significance as the level of ‘noise’ (that is, non-significant 
cables) increases. In a world where the number of historically insig-
nificant events vastly outnumbers significant events—which almost 
certainly is the world in which we live—Danto’s scepticism about 
the ability of contemporary observers to estimate historical signifi-
cance seems warranted.

However, addressing our second question, we note that Danto’s 
argument applies not only to the authors of the cables themselves, 
but also to any conceivable observer, including his hypothetical 
ideal chronicler who can make use of any information that could, in 
principle, have been knowable at the time. The ideal chronicler, in 
other words, can build up an arbitrarily complex and sophisticated 

predictive model that is not limited by the intuition of contempo-
raneous humans about what is and is not likely to be important. 
Moreover, the ideal chronicler can learn the sorts of events that turn 
out to be historically important based on its observations of which 
events have previously been labelled as important by historians. We 
operationalize this idea by training a type of machine learning clas-
sifier known as a gradient-boosted decision tree9,10. To avoid over-
fitting11, we fitted the model on a subset of the data comprising all 
FRUS cables from the years 1973–1978, along with four matching 
sets of non-FRUS cables, corresponding to the same ratios as above 
(1:1, 50:1, 100:1 and 1,132:1), finding the set of weights that mini-
mizes the classification error in the predictions over the training set 
(see Supplementary Methods for more details on the model). We 
then evaluated the model—now with fixed weights—on a separate 
‘held-out’ dataset comprising just FRUS cables from 1979 and the 
same multiples of non-FRUS cables as used in the training stage.

This simulated ideal chronicler (SIC) goes beyond the PCI model 
in two key respects. First, whereas the PCI score incorporates a 
small number of metadata fields into a single feature, the SIC model 
uses many thousands of features, including additional metadata as 
well as the cable’s content (that is, the message text). Specifically, 
we characterized the content of each cable using a topic model12—a 
type of unsupervised machine learning model that treats each cable 
(or ‘document’) as a mixture of ‘topics’, which are in turn treated as 
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distributions over ‘words’. Topics generated in this manner comprise 
lists of words with weights that correspond to the frequency with 
which each word appears in each topic. Topic models have been 
used previously to identify historical trends in corpora of newspa-
pers13,14, scientific papers15–17 and transcripts of political debates18. 
Here, we treat the resulting topics as features that predict the histori-
cal significance of the corresponding document. For our purpose, 
we estimated a topic model with K = 500 topics, effectively adding 
up to 500 new features to each cable (see Supplementary Methods 
for details). A second important difference between the SIC and PCI 
models is that, whereas the weights assigned to features in the PCI 
model are predetermined, the SIC learns the optimal weights from 
the training data (as with the PCI model, it is evaluated on the held-
out test data; see Methods). In other words, the SIC is given as many 
advantages as can be allowed without knowing specifically which 
historical records in the test set (that is, 1979) will be judged impor-
tant enough to be included in FRUS.

Figure 2 shows that the SIC model performs substantially better 
than the PCI model. Figure 2a shows PFRUS versus the SIC model 
score for all four sample sizes. Compared with Fig. 1a, the SIC scores 
are better calibrated (that is, closer to the diagonal) than the PCI 
scores. Figure 2b shows an expanded view of the 1,132:1 sample, 

with the circles sized by the number of observations, indicating that 
the mass of the distribution lies in the lower left corner. As with 
the PCI model earlier, next we considered the maximum F1 score 
attained using a threshold on the SIC score. Figure 2c shows the 
corresponding F1 scores for both models (the naive model is again 
included for comparison), showing that although performance 
diminishes with sample size for all models, the relative difference in 
performance increases: for the full sample, the maximum F1 score 
for the SIC model is four times better than the model using PCI 
alone. To understand the relative improvement, we note that the 
F1 score can increase either because the number of true positives 
goes up, thereby increasing both precision and recall, or because the 
number of false positives goes down, thereby increasing precision. 
We also note that the total number of positive cases is necessarily 
the sum of true positives and false negatives, and it is a constant 
(Fig. 2d); thus, false negatives cannot vary independent of true posi-
tives. As shown in Table 1, the improved F1 score is driven both by 
a decrease in false positives (173 versus 753) and by an increase in 
true positives (27 versus 17), but the former is considerably larger 
than the latter.

Put another way, whereas for the PCI model the by-far larger 
source of error is false positives, for the SIC model, false positives 
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and false negatives contribute roughly equally (173 and 141, respec-
tively). The high false positive rate for the PCI model is consistent 
with our opening observation about the frequency with which con-
temporary observers proclaim events to be historic, and also sug-
gests that it might be possible to avoid some of these mistakes by 
paying close attention to the features of events that do ultimately 
register as historic. However, as shown in Fig. 3, the SIC model 
does not outperform the PCI model simply by making fewer of the 
same mistakes, but rather by generating largely distinct sets of true 
positives and false positives. For example, of the 17 FRUS cables 
correctly predicted by the PCI model, only 3 are also predicted by 
the SIC model, even though the SIC model correctly predicted 27 
FRUS cables in total. Although this result seems puzzling at first, 
it follows naturally from the way in which machine learning mod-
els are evaluated. To elaborate, both PCI and SIC models produce 
scores that can be interpreted as PFRUS. To classify the cable as FRUS 
or non-FRUS, we also require a threshold τ such that if PFRUS > τ, 
we label it a positive prediction; otherwise, we label it a negative 
prediction. Naturally, increasing τ will result in fewer false positives 
(higher precision) but also more false negatives (lower recall); thus, 
depending on the precise distribution of model scores and the cur-
rent value of τ, F1 could be increased either by increasing or lower-
ing τ. As both the distribution and the optimal value of τ will be 
different for different models, there is no guarantee that the true 
positive set for one model should be a subset of the other.

These results suggest two tentative conclusions: (1) more complex 
models outperform simpler ones, albeit with sharply diminishing 
marginal returns (see Supplementary Methods for more models and 
discussion); and (2) interpreting the differences between models is 
non-trivial and requires additional evidence. To address the second 
observation, we examined the 25 highest-ranking false positives for 
the PCI model (that is, cables that the models were most confident 
would be in FRUS but were not). These cables were almost always 
classified ‘secret’, and frequently had high-level ‘Cherokee’ and/or 
‘flash’ urgency designations. The top two PCI false positives were 
typical in that they reported on highly sensitive contacts with foreign 
leaders (see http://history-lab.org/documents/1979STATE040191 
and http://history-lab.org/documents/1979STATE266494). The 
SIC model correctly identified both as true negatives, in large part 

because it incorporated the topics of communications. For example, 
it favoured cables involving more consequential political negotia-
tions and military strategy. The very highest-ranked true positive 
concerned ministerial-level negotiations over Namibian indepen-
dence, including the military implications (see http://history-lab.
org/documents/1979SECTO03013). The SIC model also ranked, in 
the top 0.03% of all cables, one titled “Passing the Torch: Saddam Is 
Solidly In Charge”. It had no urgency or handling restrictions and 
received a wide distribution. However, in the SIC model, the topic, 
with terms such as ‘Iraq’, ‘Baghdad’ and ‘Saddam’, was a more impor-
tant feature than a secrecy classification (see http://history-lab.org/
documents/1979BAGHDA01528).

In fact, the performance of the SIC model may have been better 
than Fig. 2 indicates. The reason is that, as noted earlier, it is likely 
that events that seemed important at the time would have been the 
subject of more than one cable (for example, negotiations between 
Egypt and Israel, South Africa and Namibia, and Saddam Hussein’s 
increasingly autocratic rule). However, in such cases, it is unlikely 
that FRUS historians would have included all of the relevant cables, 
either because they did not personally vet all 1.95 million cables 
or because they elected to include only a representative sample of 
those they did vet. If true, it follows that at least some cables that 
are currently scored as false positives might be more appropriately 
classified as true positives. To check the robustness of our findings 
to this possibility, we recomputed the precision of the SIC model 
under increasingly relaxed requirements for a positively classified 
cable to ‘match’ the text of a FRUS cable, finding that precision was 
essentially invariant (see Supplementary Methods for details). We 
also manually inspected all 200 cables the SIC model identified as 
historic, finding that of the 173 false positives 83 were associated 
with the same subjects as the true positives. Assuming that all of 
these matches are really true positives, the true F1 score for the SIC 
model for the full sample would increase from 0.14–0.24. Although 
substantial, even this increase would not qualitatively alter the shape 
of the performance curve in Fig. 2a, especially as we would expect 
much smaller effects for the 1:1, 50:1 and 100:1 samples (as they 
are much less likely to contain redundancies). However, it would 
mean that false negatives would become the dominant source of 
error for the SIC model. In contrast with the PCI model, in other 
words, the problem for the SIC model is not so much that events 
that it thinks will be historic turn out not to be (although that is still 
a problem), but rather that it fails to identify which seemingly unim-
portant events will later be recognized as significant. To illustrate, 
the FRUS cable with the second lowest SIC score is part of a review 
of a departmental policy that precluded hiring gay people (https://
history.state.gov/historicaldocuments/frus1969-76v30/d88). It is 
the only one like it in all of the FRUS volumes from 1973–1979, 
so the term ‘homosexuality’ does not rank high in any of the 500 
topics; also, the cable is identified as administrative and is not clas-
sified8. Looking back, however, scholars can now see this brief mes-
sage as reflecting an important moment in the history of lesbian, 
gay, bisexual and transgender rights.

To conclude, how do these results help us to evaluate Danto’s 
provocative claim that the historical significance of events cannot be 
known at the time? On the one hand, the direction and magnitude 
of our results clearly contradict the claim that nothing whatsoever 
can be predicted about history. Although the PCI model tended to 
badly overstate the importance of contemporary events—consistent 
with anecdotal evidence from news reports—the SIC model per-
formed much better and may have performed even better than our 
analysis allows due to the redundant mapping of cables to events. 
On the other hand, our results also show that historical significance 
is extremely hard to predict as the number of candidate events 
grows large. Figure 2 makes this point most directly, showing that 
as the ratio of non-FRUS to FRUS cables increases, even the best-
performing model performs poorly. Also, whereas PCI errors are 

TP = 17 3 TP = 27

FP = 753 29 FP = 173

SICPCI
FN = 151 FN = 141

TN = 320,733 TN = 321,313

Fig. 3 | venn diagram of true and false positives and negatives for the PCi 
and SiC models. FN; false negatives; FP, false positives; TN, true negatives; 
TP, true positives.

Table 1 | Confusion matrices for the PCi model and SiC model

FRuS Non-FRuS

PCi model
Predicted FRUS True positive = 17 False positive = 753

Predicted non-FRUS False negative = 151 True negative = 320,733

SiC model
Predicted FRUS True positive = 27 False positive = 173

Predicted non-FRUS False negative = 141 True negative = 321,313
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more likely to be false positives than false negatives, for the SIC 
model the main problem is likely to be false negatives. As the true 
number of events is almost certainly vastly larger than even our very 
large corpus allows, the difficulty faced by Danto’s ideal chronicler 
of simultaneously minimizing false positives and false negatives 
appears overwhelming.

Therefore, on balance, our results suggest that Danto was sub-
stantively correct. As the number of events being evaluated grows, 
successful predictions will be increasingly outnumbered by events 
that seem insignificant at the time, but which come to be viewed as 
important by future historians in part because of events that have not 
yet taken place. More generally, our results provide further evidence 
for the observation that the combination of nonlinearity, stochastic-
ity and competition for scarce attention that is inherent to human 
systems poses serious difficulties for ex ante predictions2,3,19—a 
pattern that has previously been noted in outcomes such as politi-
cal events20, success in cultural markets21, the scientific impact of 
publications22 and the diffusion of information in social networks23. 
Given that historical significance is typically evaluated on longer 
time scales than these other examples, it is especially vulnerable to 
unintended consequences24, sensitivity to small fluctuations25 and 
reinterpretation of previous information in light of new discoveries 
or societal concerns. A further complication is that historical sig-
nificance, even when it can be meaningfully assigned, is specific to 
observers whose evaluation may depend on their own idiosyncratic 
interests and priorities. Although we speak of history as a single 
entity, in reality there may be many histories, within each of which 
the same set of events may be recalled and evaluated differently5.

Despite these difficulties, we close by noting that research using 
algorithmic predictions may nonetheless prove useful to historians 
in practice. As we have already discussed, some false positives of 
the SIC may in fact be considered true positives that were omit-
ted by the FRUS historians, or simply overlooked among millions of 
other cables. This result suggests that our SIC could serve as an arti-
ficial archivist: a machine learning model that could identify a set of 
potentially significant documents for human consideration that is 
much smaller than the full corpus but contains a large portion of the 
true positives. For example, a classifier resembling our SIC model, 
but optimized for recall rather than F1 score, might correctly iden-
tify more than 80% of FRUS cables. Although such a model would 
also have a higher rate of false positives than the model presented 
here, and hence worse overall performance, it could still enable his-
torians to focus on the small percentage of records likely to include 
those they would have rated as historic without assistance, along 
with many more they might otherwise have missed. Testing this 
concept would also address a more basic question: to what extent do 
scholars agree about which records are historic? Alternatively, are 
they more likely to agree with a machine learning algorithm than 
they are with one another? Regardless, given the ever-increasing 
volume of historical data (including billions of emails, text mes-
sages and social media posts), we predict that even less-than-ideal  
chroniclers will become increasingly important for the future of  
historical research.

Methods
Calculation of PCI score. To evaluate the perceived importance of the event or 
issue, we constructed a PCI score from the rich metadata associated with every 
cable in our dataset. Cable metadata include: basic metadata (for example, subject, 
date, from, to, classification and length); tags (a fixed list of 1,749 predefined 
fields; for example, ‘SHUM’ for human rights, ‘UR’ for Soviet Union and ‘PINT’ 
for internal political affairs, from which authors can select one or more that 
apply); and concepts (an open-ended list of 33,357 descriptors; for example, 
‘surplus weapons disposal’, ‘negotiations’, ‘cat-C’ and ‘religious discrimination’) 
that authors can append to further refine the subject and/or nature of the cable. 
Some metadata were specifically intended to demarcate the relative importance of 
different communications. For instance, the ‘Cherokee’ descriptor in the concept 
field designated a cable as requiring presidential or secretary of state attention, 
‘cat-A’ was for the attention of other senior officials, and so on. Likewise, ‘eyes 

only’ handling instructions and a higher (secret) classification label identified 
communications with more sensitive information, which is indicative of perceived 
importance. Conversely, cables also had ‘tags’ that identified some communications 
as administrative or routine in nature. On the basis of a close reading of hundreds 
of cables, we identified 22 pieces of metadata that we judged to be either positively 
or negatively related to perceived importance. Reflecting these qualitative 
judgements, we assigned a weight −10 ≤ wj ≤ 10 to each feature j, where the sign 
and magnitude of wj indicates the direction (for example, negative weight lowers 
importance) and salience of the feature (see Supplementary Table 2 for a complete 
list of features included in the index, and Supplementary Methods for justification 
of the corresponding weights). For each cable i, we then computed a PCI score 
ρ = ∑ wi j ij defined as the sum of weights wij for the associated field j. Clearly, the 
PCI score is an imperfect proxy for what contemporaries thought; although it is 
based on a close reading of the cables by two historians familiar with the period 
in question, the choices of features and weights comprising the PCI score were 
necessarily subjective. In future work, it would be desirable to evaluate alternative 
scoring rules or to identity corpora that contain more explicit indicators of the 
author’s intent. Nevertheless, a major advantage of this approach is that once the 
wj values are fixed, PCI scores can be computed objectively and automatically, 
meaning that much larger corpora can be consistently coded than would be feasible 
with human coders.

Calculation of precision–recall curves. To compute the predictive power of the 
PCI score, we first converted it from an integer value between 0 and 100 to a binary 
prediction (that is, either FRUS or non-FRUS) by choosing a threshold value y* 
such that when yi > y*, the cable is predicted to be in FRUS, and otherwise not. For 
any y*, the model performance can now be quantified in terms of:

=
+

=
+

Precision
True positives

True positives False positives
and

Recall
True positives

True positives False negatives

where a true positive is a cable whose PCI score yi > y* and appears in FRUS,  
a false positive is a cable whose PCI score yi > y* but does not appear in FRUS, a true 
negative is a cable whose PCI score yi < y* and does not appear in FRUS, and a false 
negative is a cable whose PCI score yi < y* but appears in FRUS. Setting y* = 0, for 
example, means that all cables will be classified as belonging to FRUS, resulting 
in perfect recall but only at the cost of near-zero precision (because of the large 
number of false positives). Conversely, as y* → 1, the precision improves (because 
only cables about which the model is most confident are classified as belonging 
to FRUS) but recall decreases (because the number of false negatives necessarily 
increases). The result is a precision–recall curve from which we wish to select 
a single point that represents the best performance of the model. Because both 
precision and recall are relevant to our task (that is, we would like to minimize both 
false positives and false negatives), we choose the value of y* to maximize the F1 
score, defined as the harmonic mean of precision and recall:

 = ×
+

F1 2 Precision Recall
Precision Recall

SIC models. We operationalized the idea of an ideal chronicler by training a  
series of increasingly complex machine learning models on the years 1973–1978, 
and then testing on data from 1979, where each successive model adds new 
features, as follows: model 1 = PCI features only; model 2 = PCI features + basic 
metadata; model 3 = PCI features + basic metadata + tags and concepts; model 4  
= PCI features + basic metadata + tags and concepts + topics. For all models, we 
encoded FRUS cables as the positive class and non-FRUS cables as the negative 
class. Given cables from 1973–1978, the task is to predict which cables from 1979 
will be in FRUS. Model 1 uses the same features as the PCI model above (the PCI 
score), where the difference is that instead of simply computing ρi, we fitted a 
logistic regression model yi = 1/(1 + exp βρi) where yi is the probability that cable 
i will be selected for inclusion in FRUS, and β is a regression coefficient. For all 
of the remaining models, we used boosted decision trees5—a far more powerful 
machine learning method than logistic regression. Specifically, the XGBoost 
algorithm that we implemented is widely used in machine learning contests, 
where it has been found to perform as well or better than other prediction and 
classification methods. In addition to the above models, we also included a naive 
(zero information) model that predicts every cable will be in FRUS. As such, the 
naive model necessarily has perfect recall, but it also has extremely poor precision, 
and hence a poor F1 score, which gets progressively worse as the number of non-
FRUS cables in our sample increases. Although extremely simple, the naive model 
is useful as a baseline against which we can compare all of the fitted models.

When tested on the cables from 1979, the models output the probability of 
membership in FRUS for each cable. As with the PCI model, to evaluate predictive 
performance, we computed precision and recall at different threshold values 
y* of the predicted probability yi: if the probability is higher than y*, the model 
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predicts that the cable is in FRUS. For easy comparison, we again computed the 
maximum F1 score across all values of y* for each model. Supplementary Fig. 1 
summarizes the predictive performance of all of the models described above for 4 
different samples of cables from the year 1979: a 1:1 sample comprising all 1,723 
FRUS cables and an equal number of randomly selected non-FRUS cables; a 50:1 
sample comprising 50 times as many non-FRUS as FRUS cables; a 100:1 sample 
comprising 100 times as many non-FRUS as FRUS cables; and the full set of cables.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The original data (that is, cable text and metadata) analysed during the current 
study are available in the History Lab repository (http://history-lab.org) and US 
National Archives (https://aad.archives.gov/aad/series-description.jsp?s=4073). 
Derivative data (for example, model scores) are available at https://osf.io/nhmcd/.

Code availability
All code necessary to reproduce our results is available at https://osf.io/nhmcd/.
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